
The resultant values of the internal heat- and mass-transfer coefficients may be used 
for calculating the temperature and humidity fields in objects made of lightweight aggregate 
concrete of the compositions under consideration during heat treatment in chambers with ther- 
mally insulating surfaces and also for selecting the optimum modes of treatment. 

NOTATION 

T, U, dimensionless temperature and moisture content; Fo,~homochronicity number; N, di- 
:mensionless coordinate; eKo, Kossovich complex;Ly, inertial Lykowsimplex; Pn, thermal gra- 
dient Posnovnumber; a, thermaldiffusivity , m2/h; b, distancebetween end points of measure- 
ment, m; Za, ~a, Zp, arguments of the characteristic functions of irreversiblethermodynamic 
processes; t(x, !), u(x, T), temperature and moisture content at the point with coordinate x 
at the instant of time T; h, height of the sample, m; am, molsture-diffusion coefficient, 
m~/h; 6, thermal gradient coefficient, I/~ 
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COMPUTATION OF A LAMINAR NON-SELF-SIMILAR SEMIBOUNDED 

FLUID JET 

K. E. Dzhaugashtin and A. L. Yarin UDC 532.522.2 

The numerical solution of dynamic and heat problems of a laminar plane incompress -~ 
ible fluid jet being propagated along a solid surface is performedwithin the frame- 
work of boundary-layer theory. 

w Dynamic and thermal problems on the propagation of alaminar, plane, near-wall fluid 
jet have been solved earlier on the basis of an asymptotic boundary-layer scheme in a self- 
similar formulation [I]. A method and results of a computation of a semiinfinite incompress- 
ible fluid jet in the whole flow domain are elucidated below. 

The initial system of equations of motion and heat propagation of a plane stationary 
incompressible fluid boundary layer is presented on the left in Table i. The equations and 
initial and boundary conditions are written in dimensionless form, where the bar above the 
dimensionless quantities has been omitted for simplicity. 

It is assumed that the jet issues from a slot with uniform Velocity and temperature pro- 
files in parallel to the surface of a solid wall. At a range of one integrationspacingalong 
the transverse coordinate, the magnitude of the velocity at the wall and at the outer edge 
of the slot drops to zero at the exit and the temperature becomes equal to the value of the 
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TABLE I. System of Equations and Boundary Conditions 

x , y  

Ou 8u O~u 
Ox OtJ Oy ~ 

a u  or., 
- -  - ~  = 0 
Ox Oty 

u = l  for O < y < : l  "~ x=Oi 
u = O  for y = O ,  l ~ y < z c J  

u = O  for g=--0 ~ x > 0  
u ~ O  for y = o o l  

OAT OAT 1 O"AT 
Ox OF ~ Og ~ 

A T = I  for O < y < l  
AT=O for y = - O , l ~ y < = o  

A T = 0  for y = 0  I x > 0  
AT = 0  for y =  ~ I 

x = O  

A T = I  for 0 ~ < y <  1 [ 
A T = 0  for l ~ < y < ~ r  x - 0  
OAT } 

= 0  for y = O  x > O  

AT=O for y =  m 

A T = I  for ! / = 0  ] 

A T = C  for 0 < g < l  t x = 0  
A T = 0  for l ~ y < ~  

A T = I  for y = O  ~ x > O  
A T = 0  for y = z o  I" 

(b 

(2) 

A 

C 

c)u 3 

'n 

~9 = 12" - -  dl l 
U 

0 

I 
u = !  for 0 < q <  ~-- 

1 
u = 0  for ~l=0, ~1= ~-  

u = 0  t~=O for 11=0 

u = 0  for ~1-- 2 

~=0 

~>0 

OhT '@u O ( OhT ~ 

e ~ (~Ls ll 2 \ OAT 

I 
A T = I  for 0 < ~ 1 < - ~  

1 
A T = 0  for r l=0 ,  q = - ~  

A T = 0  for ~1=0 ] 

1 / ~>0 
AT=O for ~1=-~- 

~=0  

I 
A T = I  for 0 ~ 1 1 <  -~]  

1 t ~ = 0  A T = 0  for q =  2 

OAT 
0-~ = -- ~ for ~1 = 0 ] 

1 i~>0  A T = 0  for ~l= ~-  

AT=, for ,=0 

AT= C for 0<11< ~ = 0  

A T = 0  for 7 I = - ~ -  

A T = I  for r l ~ }  ~ > 0  

AT = 0 for r I = 

temperature at the wall and in the external medium, respectively. The temperature of the ex- 
ternal environment is assumed constant. Three kinds of boundary conditions at the wall will 
be examined below: A) The magnitudes of the temperatures at the wall and in the quiescent 
medium are identical;B) a non-heat-conductive wall; C) the wall temperature is fixed and 
different from the temperature of the environment [see Table i with the appropriate sections 
(2); A, B, C]. 

By analogy with [2], let us introduce a change of variable 

= x, n = .l' * u~@, (3)  
0 

which assures automatic compliance with the integral conservation condition for semiinfinite 
j e t s  i n  t h e  n u m e r i c a l  s o l u t i o n  
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Fig. i. Longitudinal velocity component profiles at differ- 
ent sections of the jet: i) x = 0; 2) 0.0017; 3) 0.011; 4) 
0.029; 5) 0.071; 6) 0.140; 7) 0.229; 8) 0.268; 9) 0.461; I0) 
1.031; ii) 2.196; 12) 4.574. 

Fig. 2. Change in the friction coefficient, boundary-layer 
thickness, and Nusselt number along the wall (case A, ff = 
0.72). Comparison with the Blasius solution in the initial 
section: i) ~ = 5~x; 2) ~ in a semiinfinite jet; 3) CfRe/2 
for a semiinfinite jet; 4) CfRe/2 = 0.332//~x (notation of the 
coordinate axes in cases 1-4 is presented in parentheses); 5) 
1 -- (CfRe/2); 6) Nu. 

i@uZdy = = const (4)  E 
o 

and converts the infinite range of integration into a strip of finite width for the numerical 
solution of the equations. 

The equations of motion and heat propagation, and the initial and boundary conditions, 
in the new variables take the form indicated on the right in the table. Hence, the trans- 
verse velocity component is determined by means of the formula 

n 
v=uOy [ 1 0 

O~ + o ~ O%(~u)dn. (5) 
o 

The passage to the physical plane is realized by the reciprocal replacement 

X = ~ ,  y =  d~. (6 )  

o 

Equations (i) and (2) with the appropriate initial and boundary conditions were solved 
by the method of lines in the half-strip q 6 [0, 1/2], ~ ~ 0 [the width of the half-strip is 

1 
related to the condition that ~(~)=[~u2dy=~) for the uniform initial velocity profile]. 

0 

The derivatives with respect to ~ in the initial equations were approximated by nonsymmetric 
differences [3] on each of the lines q = nk (k = i, 2, ..., n). This was caused by the need 
to select a sufficiently small spacing in the variable q near the boundary of the half-strip, 
where the values of the velocity and temperature gradients are amaximum [4]. The value n = 
39 was taken in the computations; the spacing in ~ varied from A~ = 0.267-10 -2 near the half- 
strip boundary to An = 0.187-10-* at the center. The system of ordinary differential equa- 
tions corresponding to the initial equations of motion and heat propagation was integrated 
by the Runge--Kutta method with automatic selection of the spacing in ~. Integration was 
performed to the accuracy of four decimals. 
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Fig. 3. Comparison between numerical computations of the ve- 
locity and temperature profiles in the self-similar domain 
(points) and the self-similar solutions (solid lines): I) u/ 
Umax; 2) AT/AT w (case B, o = 0.72); 3) AT (case C, o = 0.72). 

Fig. 4. Temperature profiles (case A, o = 0.72); the notation 
for the sections along the longitudinal coordinate is the same 
as in Fig. i. 

The numerical solution of the system of equations is fraught with definite difficulties. 
One is the singularity associated with the second equation of (i) or its equivalent: 

u 0 ~  - 2. (7) 

o~ 
For q = 0 the value of ~2/3q becomes infinite, which excludes the possibility of using (7) 
near the wall. Hence, an approximate relationship for (7) was obtained for the computations. 
To derive it, let us multiply (7) by u and let us integrate with respect to n: 

0 

Let us evaluate the integral by the trapezoid formula for ~ = ~x with the boundary con- 
ditions (I) taken into account: 

' hi" (9) 

Let us show that the last term on the right side is identically zero. Indeed, it fol- 
lows from the power series expansion of the velocity profile in y with the contour relations 
taken into account that u % y in the physical plane, while u % ~,/5 in the new variables. 
Using this and expanding the indeterminacy in the expression in the last member in (9), we 
obtain ( ~2u Ou 

a~/v-" ~:0 - ~ '/5 f~=~ -- O. (10) 

Hence, from (9) we find the following approximate formula to evaluate ~I: 

9[ : 9~ (Ii) 

It should be noted that a series expansion of the velocity profile in the transverse co- 
ordinate (analogously to the case B in the thermal problem) was also used to approximate (7). 
Hence, it turns out that the velocity and temperature profiles at o s 1 differ insignificantly 
from those computed on the basis of the approximation (ii). However, at o > i a break (phys- 
ically showing the inaccuracy of the approximation) appears in the temperature profiles near 
the wall, which is retained in the whole temperature range. The break is considerably less 
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Fig. 5. Results of computing the temperature field: a) 
change in wall temperature (case B): i) ~ = 0.72; 2) i; 
3) 2; 4) Nusselt number (case C, ~ = 0.72); b) tempera- 
ture profiles (case B, ~ = 0.72) at different jet sections: 
i) x = 0; 2) 0.0079; 3) 0.048; 4) 0.184; 5)0.461; 6) 
1.031; 7) 2.196. 

definite when using (Ii) and vanishes rapidly with distance from the initial section. Hence, 
computations performed on the basis of the approximation (ll) will henceforth be presented, 
but they are nevertheless bounded by the value ~ ~ i (mainly o = 0.72). It follows from the 
above that computations of the temperature field for o > i can be used to estimate the suit- 
ability of any scheme to compute the dynamic problem. In the physical plane this is asso- 
ciated with the fact that the predominant part in heat transport belongs to convection for 
a > 1, and hence the inaccuracy in the computational scheme for the velocity field can be 
reduced to a qualitative distinction between the computed and the real temperature fields. 

The singularity associated with the velocity and stream function vanishing at the wall 
occurs during execution of the reciprocal transformation q + y (6). However, the equivalent 
expression (3) can be used for the computations; by evaluating the integral by the trapezoid 
formula we obtain Y* = 2qz/~zu~. 

Now let us examine the boundary condition for the temperature field on a heat-insulated 
wall (case B). The temperature gradients in the x, y and ~, q coordinates are connected by 
the relationship 

OAT OAT. , (12) 

~ a~ ~=o= ay ~ o  

where by assumption ~AT/~yly:o. Using the heat-propagation equation and expanding the inde- 
termlnacy twice, we can see that 

OAT I = -- o o .  (13) 

To realize this condition in the numerical solution, let us use a series expansion of 
the temperature in powers of y: AT = AT w -- axy n, from which it follows that the temperature 
for small q varies in the new variables according to the law 

, A T  = A T w - - a ~  a/~ (14) 

(ATw, a, and at are functions of ~). Writing the value of the temperature near the wall on 
the first and second lines 

AT~ = A T ~ - - a ~ / ~ ,  AT2= A T w - - a ~ / 5 ,  (15) 

we find an expression for 

AT1--( rl--~- 2 )3/5 AT2 
AT=, = (16) 

rl~ 1 s/5 

The value of the wall temperature (16) is the boundary condition for the thermal problem in 
ease B in place of (13). 
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Fig. 6. Temperature profiles 
at different jet sections 
(case C, ~ = 0.72): i) x = 0; 
2) 0.0017; 3) 0.011; 4) 0.029; 
5) 0.063; 6) 0.127; 7) 0.183; 
8) 0.267; 9) 5.844; i0) 10.599; 
!I) 19.477; 12) 39.724. 

w The results of a numerical computation of the dynamic problem (Fig. i) show that 
the flow domain of a semiinfinite jet can provisionally be separated into three sections. 
For the first (the initial section 0 ~ $ ~ 0.015), the escape velocity from the nozzle is 
conserved within the limits of a certain zone which vanishes at the end of the section. Hence, 
the external jet domain is developed as a mixing layer and the internal domain, as a near- 
wall boundary layer (Fig. i). A comparison between the regularities of internal jet domain 
development in the initial section and the Blasius solution for a plate is shown in Fig. 2. 
Let us note that since the Blasius solution for a plate can be used at ranges from the lead- 
ing edge which considerably exceed the viscous length, the comparison presented is suitable 
for sufficiently large Reynolds numbers. It is seen that the values of the boundary-layer 
thickness (the distance from the wall at which the velocity u differs by 0.01 from the ex- 
ternal stream velocity is taken as the boundary-layer thickness) and the drag coefficient 
[Cf = 2(Yw/PU 2) = (2/Re)(3u/3y)[y=o ] are close. 

Rearrangement of the flow field, which terminates (for ~ ~ 4) by emergence into the self- 
similar mode, occurs in the transition region. The latter is shown by a comparison between 
the numerical and self-similar solution (Fig. 3): 

t 3 E - ~  3 
] f l o e  I z T ( l _ _ z W - ) ,  ~ = - - z ;  ( 8 - - 5 z T ) .  (17) 

u = 3 
It is seen from Fig. 2 that the drag coefficient diminishes comparatively rapidly in the 

initial section. 

The temperature field for the boundary conditions A (Fig. 4) is deformed qualitatively, 
as is the velocity field. The change in the Nusselt number Nu = qwd/(To --T=) = 3hT/~yIy=o 
along the wall corresponds approximately to the Reynolds analogy (Fig. 2, curve 6). The 
self-similar temperature profile under boundary conditions of the type A will exist only for 
o = 1 and has the form 

AT = -E-k u (k = io , u A T d y ) .  (18) 

The wall temperature for a flow along a heat-insulated wall will diminish with distance 
from the initial section (Fig. 5). The wall temperature increases with increase of the Prandtl 
number. The length of the thermal stabilization section (E ~ 2 for ~ = 0.72) is less than 
the dynamic length. The increase of the Prandtl number increases the thermal stabilization 
length. Theself-similar temperature profile has the form (Fig. 3) 

Q 1 (1 -- z3/2) ~ , Q = ~ ATudy. (19)  AT 
( 4 0 E ) l / r  

.[ _ (I -- z3/2) ~ dz 
0 

- Complexrearrangement of the temperature field from the jet value in the initial section 
tea distribution characteristic for the boundary layer at a constant wall temperature occurs 
:under the boundary conditions C. The significant length in the thermal stabilization sec- 
tion (~ ~ 20 for C = i) and the nature of the change in Nusselt number Nu = qwd/(T w -- T~) = 
~AT/3y[y=o over the longitudinal coordinate x (Fig. 5a) is also visibly associated with this 
circumstance. This dependence has a minimum at some distance from the jet initial section. 
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The temperature profiles at different jet sections in the initial and transition regions are 
represented in Fig. 6. A comparison between the self-similar temperature profile obtained 
numerically and the self-similar solution of the heat-propagation equation (Fig. 3) 

z 1 

0 
A T  = 1 - -  1 l ( 2 0 )  

z 2~ (1 - -  z~/D ~  dz 
0 

indicates the agreement between these solutions over the whole jet cross section. 

NOTATION 

d, slot width; U, fluid velocity at the exit from the slot; 9, coefficient of kinematic 
fluid velocity; ~, Prandtl number; Re = Ud/~, Reynolds number; T, temperature; To, T~, Tw, 
values of the temperature at the slot exit, the quiescent medium, and the wall, respectively; 

= x/dRe, y = y/d, dimensionless longitudinal and transverse coordinates;u =U/u, v=(v/U). 
Re, dimensionless longitudinal and transverse velocities; Umax, maximum velocity in the jet 
cross section; AT, = To -- T= for cases A and B; ATI = T w- T= for case C; AT = (T -- T=)/AT~, 
excess temperature; q, heat or thermal flux; ~, stream function (u = 3~/~); ~ = ~/d, dimen- 
sionless boundary-layer thickness at the wall in the initial section of the jet; Q, excess 
heat content; C = (To -- T=)/(T w -- T~), dimensionless excess fluid temperature at the exit 
from the slot (case C). 

l, 

2. 
3. 

4. 

LITERATURE CITED 

L. A. Vulis and V. P. Kashkarov, Theory of a Viscous Fluid Jet [in Russian], Nauka, Mos- 
cow (1965). 
B. P. Beloglazov, Dokl. Akad. Nauk SSSR, 198, No. 3 (1971). 
A. Angeaux, Mathematics for Electrical and Radio Engineers [Russian translation], Nauka, 
Moscow (1964). 
B. P. Beloglazov and A. S. Ginevskii, Uch. Zap. Tsentr. A~ro-gidrodinam. Inst., ~, No. 
4 (1974). 

DIFFUSION IN A LAMINAR BOUNDARY LAYER OF A TURBULENT 

JET INCIDENT ON A PLATE 

G. S. Antonova UDC 532.522.2:532.7 

Solutions are found for the stationary and nonstationary equations of convective 
diffusion on the basis of an experimentally detected hydrodynamic flow picture of 
an ideal fluid. The agreement between the results of boundary-layer soundings, ob- 
tained by different methods, is shown. 

The requirements of practice evoked the necessity to investigate the process of metal 
surface dissolution under the effect of axisymanetric turbulent jets of aqueous solutionsflow- 
ing perpendicularly into the surface. In particular, such a method of dissolving a metal surface is 
used in the production of electrical circuits for electronic apparatus. 

The process of dissolving copper under these conditions is characterized by the constant 
delivery of a mass of solution to the surface, whereupon a heterogeneous reaction occurs on 
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